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Pair contact process with a particle source
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We study the phase diagram and critical behavior of the one-dimensional pair contact pRCBswith a
particle source using cluster approximations and extensive simulations. The source creates isolated particles
only, not pairs, and so couples not to the order paranféterpair densitybut to a nonordering field, whose
state influences the evolution of the order parameter. While the critical pgisitows a singular dependence
on the source intensity, the critical exponents appear to be unaffected by the presence of the source, except
possibly for a small change iA. In the course of our paper, we obtain high-precision values for the critical
exponents of the standard PCP, confirming directed-percolationlike scaling.
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[. INTRODUCTION continuum theory for models with INAC and showed that the
static critical behavior is that of DRP28]. Formally eliminat-
Critical phenomena at absorbing-state phase transitionsg the auxiliary field, they obtained a closed equation for the
are of longstanding interest in statistical phygits3|, being  order parameter, in which a memory term appears; simula-
found, for example, in models of epidemif4], catalytic  tions of this theory also show nonuniversal exponéBa.
kinetics [5,6], surface growth 7], self-organized criticality ~While a theoretical analysis of variable spreading exponents
[8—11], and turbulencé12-14. The transition between ac- in the PCP is lacking, an analogous phenomenon has been
tive and absorbing states arises out of a conflict between twanalyzed exactly in the simpler cases of a random walk with
opposing processe®.g., creation and annihilatiopnwhen  a movable partial reflectdi36], or of compact DP confined
continuous(as is often the caseit falls generically in the to a parabold37].
directed percolatioDP) universality clas§15—-17. When In previous studies of the PCP, and, indeed, of all non-
two or more absorbing states exist and are connected by equilibrium models possessing an auxiliary or nonordering
symmetry operation, as in branching and annihilating ranfield ¢, the latter has been allowed to relax to its stationary
dom walks, a new kind of critical behavior appept§—21.  value[38]. Only the effect of varyingp in the initial condi-
Unusual critical behavior also arises in models that carfion has been explored. Given the surprising results of these
become trapped in one of an infinite number of absorbingStUdie§’ it is of intere;t to_invc_estigatg the consequences of
configurations(INAC). (More precisely, the number of ab- changing the nonordering field in tiséationary stateas well.

sorbing configurations grows exponentially with the system!© this end, we introduce an external figidhat couples to

size. There is no special symmetry linking the different ab-fb’ but not to the order parameter itself. In concrete teims,
sorbing configurations Models of this sort were introduced

is the rate(per sitg of attempted insertions aolated par-
to describe surface catalydiz2,23; their critical properties ticles. The source may only insert a particle at a vacant site,
have been studied in detail by various workgzd—31]. In

both of whose neighbors are also vacant; in this way, no pairs
one dimension, the pair contact procg$sCP [25], and

are created, and the absorbing nature of configurations de-
other models with INAC exhibit static critical behavior in the

void of pairs is maintained. In this paper, we examine the
DP clasg26,32, but the critical exponents and 7, associ- effect of this perturbation of the phase diagram and critical
ated with the spread of activity from a localized seed, var

behavior of the PCP, using cluster approximations and exten-
continuously with the particle densii in the environment

Ysive simulations.
[26,27,31,33-3p [These exponents are defined via the The balance of this paper is devoted to defining the model
asymptotic {—o) power laws: survival probabilityP(t)

(Sec. I); a discussion of cluster approximatiofSec. Ill);
s o and analysis of simulation resulSec. V). We close in Sec.
~1"% and mean activity(t)~t”; note also that the mean- \/ wjth a discussion of our findings.
square distance of activity from the sed®f(t)~t%] This
anomalous aspect of critical spreading for INAC may be
traced to a long memory in the dynamics of the order-
parametep arising from a coupling to an auxiliary fieldhe
local particle density¢), that remains frozen in regions In Jensen’s pair contact proced@CP [25], each site of
wherep=0 [28,30,31. Theoretical understanding of models the one-dimensional latticg is either vacant or occupied by
with INAC remains incomplete. Mior et al. proposed a a particle. Each nearest-neighlidiN) pair of particles has a
rate p of mutual annihilation, and a rate-1p of attempted
creation. In a creation event involving particles at siteasd
*electronic address: dickman@fisica.ufmg.br i+1, a particle may appedwith equal likelihood at sitei
Telectronic address: odor@mfa.kfki.hu —1 or ati+2, provided the chosen site is vacattempts

Il. MODEL

1063-651X/2001/64)/0161188)/$20.00 65016118-1 ©2001 The American Physical Society



RONALD DICKMAN, WILSON R. M. RABI%LO, AND GEZA ODOR PHYSICAL REVIEW E65 016118

to place a particle at an occupied site fdih an annihilation  ronment withé# ¢, the advance of activity is no longer
event, a NN pair of particles is removed. The PCP exhibitsequivalent to that in the stationary state, and the spreading
an active phase fop<p.; for p=p. the system eventually exponents are not constrained to take DP vaJuks.this
falls into an absorbing configuration devoid of NN pairs, butpaper we studstatic critical behavior with¢# ¢, due to
that typically contains a substantial densfiyf isolated par-  the action of the source.
ticles. The best estimate for the critical parametempis
=0.077 090 (5)32]. (Here, and in what follows, numbers in
parentheses denote uncertainties in the last figure or figures.
To the above dynamics we now add a third process, ad- In this section, we develop dynamic cluster approxima-
dition of isolated particles. Each site is bombarded by partions for the PCP with a source of particles. Such approxi-
ticles at rateh. (This is a fluctuating source; the mean time mations often yield qualitatively correct phase diagrd&is
between successive addition attempts at a given sitehi$ 1/ For the standard PCo sourcethe two-site approximation
An attempt to place a particle at sités successful if and was presented by Carlon, Henkel, and Schotlkv¢42],
only if sitesi —1, i, andi + 1 are all vacant. In the absence of while the three-site approximation was derived by Marques,
the source, an empty lattice is absorbing. Foram0, how-  Santos, and Mendégg1]; our results foh=0 are consistent
ever, the insertion of isolated particles onto an initially emptywith these studies. The-site approximation consists of a set
lattice corresponds to random sequential adsorg®8®) of  of coupled differential equations for the probabilitie§” of
dimers in one dimension. The saturation density for this proeachn-site configurationC. (There are 2 such configura-
cess is (e 2)/2=0.432332. . .,[39]. tions, but the number of independent probabilities<ig",
Previous studies leave little doubt that the static criticaldue to normalization, and various symmetridhe system is
behavior of the PCRwithout a sourcgbelongs to the uni-  assumed homogeneous, so that B{® are independent of
versality class of directed percolation. Jensen and Dickmagosition.
found that the critical exponentg and y (which govern, Since transitions in a set af contiguous sites generally
respectively, the stationary mean of the order parameter, argbpend on sites outside the cluster, ttksite probabilities are
its variance, andv andv, (which govern the divergence of coypled to those fon+1 and so on, generating an infinite
the correlation time and correlation length as one approach@ferarchy. Then-site approximation truncates this hierarchy
the critical poin}, are all consistent with DP valu¢g6]. In- py approximatingnsite probabilitiesfor m>n) in terms of
addition to these static properties, the exponénivhich  _sjte conditionalprobabilities. For example, iy represents
governs the initial decay of the order-parametpr<(”"),  the state of sité, then in the two-site approximation, a three-

starting from a fully occupied lattice, was found consistentsite joint probability for a sequence of nearest-neighbor sites,
with DP. More recently, the order-parameter moment ratiok | m is approximated so

were found to be the same as those of other models belong-
ing to the DP unlversa_llty clags2]. S P(oy,01)P(0),0)
Starting from a spatially homogeneous distribution of NN P(oy,0,0,) =P (0| o)) P(0o},0m) =
pairs (for example, a completely filled lattizethe system P(a)
relaxes to a stationary state. If, by contrast, the activity is
initially localized (e.g., a single “seed” pair in an otherwise
absorbing configurationwe may study the spread of activ-
ity. As noted above, the critical exponersind » character-
izing spreading vary continuously witth, and assume DP
values only for¢= ¢,,~0.242[40,41. The natural density
dnat IS the mean particle density in absorbing configuration
generated by the process itself,mt, starting with all sites
occupied. One may, equivalently, defigg, as the particle
density in the criticaktationarystate, in the thermodynamic
limit. An environment with > ¢, favors spreadingand
viceversy, since the higher the particle density in the envi-
ronment, the more pairs will be formed per creation event.
A kind of spreading phenomenon also arises in the sta- d
tionary state due to spontaneous fluctuations. In the critical —(1)=—2p(1)%+(1—p)(0)(1)2+h(0)3, )
stationary state, we may expect to find inactive regions of all dt
sizes; the particle density in large inactive regionspjg;.
When activity spreads into such regions, it should follow thewhere of course (03 1—(1). Forh=0, the stationary ac-
same scaling behavior as critical spreading with;. Since tive solution is(1)=(1—3p)/(1—p) so that the critical an-
the exponents governing survival and growth of activity innihilation probability p.=1/3. [Aside from the active solu-
the stationary state are subject to the scaling relati®ns tion, we always have the absorbing state, €D)] For h
=pBlvyandz=2v, /v, with 8, v, , andy, taking DP values >0, there is a nonzero stationary particle densitydny p
in the stationary state, it follows that the spreading exponente[0,1], i.e., the source removes the phase transition, at this
take their usual DP values as well, fé= ¢,5. (In an envi- level of approximation.

lll. CLUSTER APPROXIMATIONS

@

It is convenient to denote configurations in the PCP by a
string of zeroes and one’s, the former representing vacant
sites and the latter, occupied sites. We denote the probability
of configurationo,...,0, by (o4,...,0,), i.e., (1) denotes
the probability of a randomly chosen site being occupied,
S'(11) the probability of a nearest-neighbor occupied pair, and
S0 on.

In the one-site approximation, we have the transitions
(1)—(0) at rate P(1)> and (0)-(1) at rate (1
—p)(1)[1—(1)]+h[1—(1)]3, vyielding the equation of
motion
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TABLE |. n-site approximation results.

n pc(h=0) pc(h=0.1) #(h=0) #(h=0.1)
2 0.2000 0.6667 0 0.5
3 0.1277 0.1820 0.23 0.461
4 0.1185 0.150 23 0.2166 0.5
5 0.114 0.144 05 0.18 0.46
6 0.103 0.117 0.2234 0.438

SIM 0.077 091(5) 0.086 27215) 0.241(1) 0.421(1)

Next, we consider the pair approximation. There are twgproximations appear to approach the simulation valnese

independent probabilities, since, by symmetry, E0)1),
while normalization implies (00)2(01)+(11)=1. There
are five possible transitions of a NN pair of sites: fr¢d)
to (01); from (01) to (00) or (11); from (11) to (00) or (01).

the oscillatory nature of the approachdq,). We find in the
n=2 approximation that for nonzeitg the order-parameter
p(p.—p)? in the neighborhood of the critical point, that is,
the mean-field exponemdy==2 in this case; fom>2 we

To illustrate how rates are calculated, we consider the tranfind the usual valuegy:= 1.

sition (00)—(01). There are two possible mechanisms: one For h=0, we can obtain a rough estimate @f by ex-
involves a(11) pair just to the right of the central pair; the trapolating the cluster results, i.e., via a linear fitpgg(n)
other involves the action of the source, and requires a vacaplotted versus 1. Using the data fon=3—-6 yields p,
site to the right of the central pair. In the first case, the prob=0.0827); using only then=4—6 data, we findp,

ability of the required configuratiorip011), is approximated
as (00)(0D)(11)/[(0)(1)]; the intrinsic rate is (¥ p)/2. In

=0.011), consistent with the simulation result. Unfortu-
nately, the behavior of these low-order approximations is not

the second case, the configuration probability is (000)sufficiently regular to allow an extrapolation me—<, when

=(00)%/(0) in the pair approximation. Thus, the contribu-

tion to d(01)/dt due to the transition (00} (01) is

1-p (00)(01)(11) “h (00
2 (0)(1) 0)

Note that this expression is multiplied by2 in the equation
for d(00)/dt, to take the mirror-image transitioh(00)
—(10)] into account(Recall that(10) has been eliminated
by symmetry.

h>0.

Given a sequence of cluster approximations, and knowing
the value ofp., one may apply Suzuki'soherent anomaly
analysis to extract certain critical exponen&3]. In the
present case, however, our estimates foappear to con-
verge slowly; we fing8=0.29 forh=0 (from a quadratic fit
to the order parameter at the critical pojréind =0.28 for
h=0.5. Data for larger clusters will be needed in order to
derive precise predictions for critical exponents.

In Fig. 1, we compare thae-site approximation predic-
tions against simulation results for the phase boundary

Proceeding in this manner, one readily obtains a pair of.(h). The cluster approximations appear to approach the

equations for(11) and (1)=(11)+(01)

d (11
qt(10=-Pl2AD+ (D] 75
1D[(1)—(11
+(1—p>[1—(11>]%, 3
d (01)(11)  (00)2
qtD="2pAY +(1=p) —z5—+h-- @)

The stationary active solution fdr=0 is (1)=(1—-5p)/(1
—p), (11)=(1-3p)(1)/(1—p), so thatp.=1/5. The criti-

simulation curve in a qualitative fashion. On the other hand,
all the approximationsn(<6) predict a jump inp. at h

=0, while simulations showp. to be continuous, though
singular, at this point. Thus, it appears that detailed features
of the phase diagram are beyond the small-cell approxima-
tions developed here.

QAB [ » v vt

4 ]
5 |
o1 W ]
0.12 TD_D/@_D/D & 1

010} .

Pc

cal annihilation rate is 2/3 for any nonzelo 0.08 ”',,./o/”/*/,*«

The three-site approximation involves five independent ' ]
variables and thirteen distinct transitions. Integrating the 0,06 Lt ]
coupled equations numerically, one finds=0.1277 forh 0.0 0.2 0.4 0.6 0.8
=0, andp,=0.181 97 for any nonzero source. We have ana- B2

lyzed cluster approximations for up to six sites; the predic-

tions for p. and for the density of isolated particles,,; at

FIG. 1. Cluster approximation predictioffer n=4, 5, and 6, as

the critical point are summarized in Table I. The cluster ap-indicated and simulation resultircles for the phase boundary.
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IV. SIMULATIONS 0.410
A. Method 0.409
We first define the simulation algorithm for the PCP in the
absence of a sourcén£0). We consider a ring of sites. 0.408
Since all events depend upon the presence of a NN pair, we e
maintain a list of such pairs. An event consistg1n choos- 0.407
ing a procesgannihilation with probabilityp, creation with
. . . 0.406
probability 1-p); (2) choosing a NN pair at random from
the list; (3) deleting the two particles in the pair, in case of 0405 . .
annihilation, or, in case of creation, adding a particle adja- 0.0769 0.0770 0.0771 0.0772
cent to the pair, if possible. More specifically, in the case of p

creation, ste3) consists of choosingwith equal probabili-

ties) the site immediately to the left, or to the right, of the  FIG. 2. Simulation data for the stationary order-parameter value
NN pair, and inserting a particle at this site if it is vacant. p for L=50 andh=0. The solid line is a cubic fit.

The time increment associated with each even¢ation or

annihilation is At=1/N, where N is the number of NN p(pe,L)~L A, (5)
pairs just prior to the eventlf N,=0, the system has fallen

into an absorbing configuration and the trial ends.this 55 has in fact been verified for many absorbing-state phase
way, each NN pair undergoes, on average, one el@8t  yansitions[2,3]. For noncriticalp values, the dependence of
ation or annihilationper unit time. The list of NN pairs must p(pe,L) uponL shows deviations from a power law, typi-
naturally be updated following each annihilation or successéa”; manifested as curvature on a plotagip,,L) versusL

c

ful creation. _ S on log scales. The same considerations apply to the survival
Whenh>0, each creation or annihilation is followed by a time “whose critical finite-size scaling form is

certain numbeiN;, of source events. Suppose a creation or

an_nlhllatlon has just occgred, and _that_therg are iy T(pc,L)~L”H’”l. ©6)
pairs. Then the next creation or annihilation will occur after
a time interval of IN,; during this interval, the expected
number of source events IshAt=Lh/N,, sinceh is the
rate of insertion attempts per site and unit time. Thus, afte
each creation or annihilation we perfori, insertion at-

Our second criterion for locating, is thus power-law de-
pendence ofr on the system size.

A third criterion is based on the independence of moment
tempts, wheré\,, is a Poissonian random variable with mean rati0s such asmat the critical point. This property, which has
Lh/N,. An insertion attempt consists in choosing a it long been used in studies of'equmbrlum cr|t|pal phenomena
random(each site has probability [1/ no lists are used in [44], was more recently verified for absorbing-state phase
this procesk and inserting a particle there if and only if sites trgnsmons in the contact process gnd HGRA4Y. We dete_r-
i—1.i. andi+1 are all vacant. mine the valuep*(L,,L,) at which the moment ratios
m(p,L,) andm(p,L,) take the same value, for pairs of sys-
tem sizesL; andL,. Extrapolatingp* to L—« yields an
estimate forp, .

We used the simulation algorithm described above to de- We studied system sizés="50, 100, 200, 500, and 1000.
terminep.(h) at a number of differenth values. In addition, A study at a particular value df begins with a quick survey
detailed studies were performedhat 0, 0.1, and 10 in order of small systems, to obtain a preliminary estimatepgf
to obtain precise values for critical exponents and other propThen, for each system size, we perform high-statistics studies
erties. All simulations start from a fully occupied lattice. The at three to fivep values, obtaining the properties of interest

order parameterp=N,/L (i.e., the density of nearest- {5 high precision. Values g, m, 7, and at intermediatep

neighbor pairs the survival probability,P(t) (that is, 10 yalues are obtained via interpolation of the high-precision

haveN,>0), and the particle density are monitored during  gata using polynomialtypically cubig least-squares fits.

the evolution, and, in particular, in the stationary state. The e tested this procedure on the standard PGPQ). For

properties of principal interest as regards critical behavior ar¢ — 5o we ran a total of & 1C° trials atp values of 0.0769,

the stationary order-paramefer(the overline denotes a sta- 0770, 0.0771, and 0.0772. For this small system, the sta-

tionary meaj the moment ratian=p?/(p)?, and the life-  tionary state is well sampled in trials that extend to a maxi-

time 7, obtained by fitting an exponential to the survival mum time of 500. FolL = 1000, we performed a total of 3

probability: P(t)~e~ V7. Uncertainty estimates fqr, ¢, m, X 10* trials (extending to a maximum time of ¥Dat p

and 7 are obtained from the standard deviation evaluated=0.0770, 0.0771, and 0.0772. Sample sizes and maximum

over a set of 3-5 independent runs. times for intermediate system sizes fall between the values
In order to fix the critical poinp, for a given value oh, quoted forL =50 and 1000; similar parameters were used in

we employ three criteria. The first is the finite-size scalingthe high-precision studies at=0.1 and 10. Figure 2 illus-

behavior of the order parameter: one expects a simple powetrates the results of the fitting procedure foiit is clear that

law dependence at the critical point, the simulation data are well represented by a smooth func-

B. Results
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FIG. 3. Simulation data and polynomial fits for the moment ratio
m, for h=0. System sized =50, 100, 200, 500, and 1000 in FIG. 5. Lifetime versus system size at the critical point. Sym-
order of increasing slope. Inset: detail of crossing regionlfor bols as in Fig. 4.
=100, ... 1000.

As noted in the Introduction, the order parameter is expected
tion. In Fig. 3, we show all of the data fon (for h=0) to follow a power law,p~t~° during the approach to the
together with the associated polynomial fits. stationary state. A study @t=0.077 091 in a system of 1000

For h=0, the three criteria mentioned above yigd  sites yieldedd=0.1596 (2)(see Fig. 6, while the expected
=0.077091(5), in excellent agreement with previous stud- DP value isf= B/v,=0.15947(3). Finally, a study ofp in
ies [32,40,48. The uncertainty inp. reflects scatter in the the supercritical regimép=0.0722-0.076, for L=1000
last three moment-crossing points, and in fhealue yield-  yielded 8=0.276 (3)[via the usual relatiorp~ (p.— p)*].
ing power laws forp and for 7. Extrapolating the values of The accepted value i8=0.27649 (4)[47]. We note that
m(p.,L) to L—oo, we findm=1.1740(5). (Here, the un- these exponent values are the highest precision yet reported
certainty includes three sources: that in the original data, théor the PCP, and that they place the model unambiguously in
uncertainty of the extrapolation pt, and the uncertainty in the DP universality class.
p. itself. The same applies to the exponent values discussed While the results forg/v, and B furnish the estimate
below) Our result is once again in excellent agreement withv, =1.092 (7), it is desirable, for reasons explained below, to
that of Ref.[32], m.=1.1735(5) for transitions in the DP have an independent estimatewof. SinceA=p.—p enters
universality class in 1 dimension. all finite-size scaling forms in the combinatianlL "+, we
From the scaling op at the critical point we findg3/v, may obtain such an estimate either from a data-collapse
=0.2522 (5)(see Fig. 4 this exponent ratio takes the value analysis, or by studying the finite-size dependence of a de-
0.2521 for the DP clag#l7]. The survival time dat&Fig. 5 rivative such asdm/dp at p.; the latter must diverge as
yield v, /v, =1.577(4), while the DP value is 1.580@7].  L"1. We find that this derivative does follow a power law;

'08 T T T T T T 00 T T T T
-1.0
05
a 12 a
£ £ 10
-1.4
151
16
'1.8 1 1 1 1 1 1 _2.0 1 1 1 1
35 40 45 50 55 60 65 7.0 0 2 4 5} 8 10
InL Int

FIG. 4. Stationary density versus system size at the critical point FIG. 6. Decay of the order parameter @t. Upper curve:h
forh=0 (O), h=0.1(+), andh=10 (< ). Error bars are smaller =0; dotted lineh=0.1; lower-most curvesi=1 andh= 10, which
than the symbols. cannot be distinguished on this scale.
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FIG. 8. Stationary pair density versias=p.—p, for h=0, 0.1,
and 10;L=1000. Symbols as in Fig. 4. Straight lines represent
least-squares fits to the linear portion of the datalfer0 andh

i . . =10; the slopes are 0.276 and 0.287, respectively.
a fit to the data yields’, =1.086 (22), where the relatively

large error reflects the uncertainty associated with numericak present. Figure 6 shows that the main effect of the source
evaluation of a derivativgBoth our estimates are consistent js g small decrease in the amplitude. Analysis of the local
with the DP valuepy, =1.0968) slopes of the graphs in Fig. 6 leads @e-0.1603 (5) in the
Our data for the particle density(p.,L) fall on a straight  presence of the source, in very good agreement with the
line when plotted versus—#'"+, and extrapolate to 0.241)  value #=0.1596 (4) found forh=0. The rather imprecise

for L—oo (F|g 7. In the active stateys represents théotal estimates fOI’VJ_, obtained directly from the scaling of
particle density(isolated particles as well as those belongingdm/dp, likewise agree to within uncertainty, independent of
to pairg, but whenL —o at p=p, there are no pairs; in this o ) )
limit, ¢ corresponds to the natural densi,,; of isolated Ther_e are two pr|n_C|paI differences b_etween the scaling
particles. Our result agrees with previous studies, based dRoPerties with and without the source. First, Table Il shows
rectly on absorbing configurationd0,41. that the limiting (—) value of the particle density is
The procedure described above, which furnishes results ahuch larger whem>0. (The data fory at the critical point,
unprecedented precision for the standard PCP, was repeatadd the extrapolation t¢.., are depicted in Fig. YIn fact,
for h=0.1 and 10. The resulting critical parameters are comthere is good reason to expegt, to jump from ¢, to a
pared with theh=0 case in Table Il. We remark that the higher value as soon ds>0 (just as in the cluster approxi-
dependence op, 7, and m on L, at the critical point, is mations of the previous sectiprsince, no matter how weak,
qualitatively the same as fdr=0, and that the associated the source will eventually fill in all available sitggs in
critical exponentsp/v, , v;/v,, and §, and moment ratio RSA), in the absence of activity. With increasitg .. ap-
m, are the same, to within uncertainty, as for 0. This is  proaches the RSA value of 0.4323.
particularly clear from Fig. 4, which compares the depen- In addition to the expected difference in limiting particle
dence ofp on L at the critical point forh=0, 0.1, and 10, densities, the source appears to induce a rather subtle change
and Fig. 5, a similar plot of the lifetime. The same power in the critical exponeng (see Fig. 8 The value forh>0 is
laws are seen, regardless of the valub,dhe sole difference about 4% greater than fér=0; since only about 2% of this
between zero and nonzehobeing a slight change in ampli- difference may be attributed to uncertainty, this seems to
tude. The data fon=0.1 andh=10 are virtually identical. = represent a significant, albeit small, change in the exponent.
The decay op at the critical point again appears to follow The interpretation this result, however, is not straightfor-
the same power law, regardless of whether or not the souragard, since all of the other exponerity ratiog studied ap-

FIG. 7. Stationary particle density versus #/*:, illustrating
linear extrapolation tal., . Symbols as in Fig. 4.

TABLE IlI. Critical parameters of DP and the PCP. DP exponents from Ri&f, m from Ref.[32].
Numbers in parentheses denote uncertainties in the last fgure

h Pc Blv, vilv, B vy 0 m I/

DP 0.252084) 1.5807 0.27649 1.09684) 0.15947(3) 1.1735(5)

0 0.07709%5) 0.25233) 1.577(4) 0.276(3) 1.086(22) 0.1596(4) 1.1740(5) 0.241(1)
0.1 0.086272Z15 0.2540(15) 1.571(9) 0.287(3) 1.083(2) 0.16024) 1.176(1) 0.421(1)
10 0.097 85010) 0.2554(10) 1.574(10) 0.287(3) 1.080(10) 0.1604(4) 1.175(1) 0.433(1)
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0.100 — T T 1 J] V. DISCUSSION

___________________________ Motivated by the question of universality at an absorbing-
0095 - 7 state phase transition in the presence of a source coupling to
L/ i . a nonordering field, we investigated the phase diagram and
/ 4 o * - critical behavior of the PCP with a source of isolated par-
ticles. We studied the model via cluster approximations and
S * 1 ] extensive simulationsn-site cluster approximation&or n
I T <6) yield predictions for the phase boundary(h), and the
I . isolated particle density that appear to approach the simu-
0.080 I i lation results. All of the cluster approximations studied here
8 6 4 2 0 2 4 predict of a discontinuity irnp., at h=0; simulations show
| p.(h) to be a continuous function, albeit singlartet 0.
0.075 ) ) ) ' o The central conclusion from extensive simulations per-
formed for source strengthis=0, 0.1, and 10 is that the
h presence of the source, and the associated change in the
FIG. 9. Critical annihlation rate, versus source strengththe ~ Packground density of isolated particles, has no detectable
dashed line is simply a guide to the @ydhe inset shows the €ffect on scaling at the critical point. The present level of
critical point shiftAp, versush on log scales; the straight line has Precision permits us to state that the valuesvof g/v, ,
a slope of 1/2. v, /v, , 6, and the moment ratim= p?/(p)?, are constant to
. . . within 1% as we vary the intensity of the source. Our results
pear to be insensitive to the source. In particular, the valuefbr these parameters are fully consistent with known values
for g/v, are constant to within 1.2%, while ourresult for o the DP universality class. We have noted, on the other
(from the scaling ofim/dp) is constant to within 0.6%, im- g that in the presence of the source, the critical exponent
plying constancy of3 to better than 2%. Thus, it is difficult j appears to be about 4% greater than the DP value. This is
to accept the apparent change nat face value; a better , conflict with the balance of our results that indicate con-
understanding will require either a theory of the effect of thegiancy of the critical exponents. A resolution must await de-
source, or numerical results for larger systems. It is worthgjonment of a theoretical understanding of scaling in the
noting that with the exception 68, all exponents have been , esence of the source, and/or more extensive simulations.
obtained via finite-size scaling at the critical point. Thus, our  tha apparent insensitivity of the critical behavior to a
results are consistent with the possibility that the SOUrC&nange in the stationary density places the PCP in the same
modifies the apparent scaling of the order parameter near, bl:'étegory as the threshold transfer procés3P) [27,38.
not at, the critical point, perhaps due to additional correctiongyhereas in the TTP the nonordering field may relax in the
to scaling. We cannot rule out a triias opposed to merely 5psence of activity, while in the PCP it cannot, the two mod-
apparent change in the exponerg with the data in hand, g5 are similar in that the nonordering field exhibits only
but, given our other results, such a modification would ema‘%hort—range correlationi26,29. An interesting open ques-
a very surprising violation of the usual connection between;q, is whether perturbations in a nonordering field that lead
scahn_g_ in the_ supercritical regime and finite-size scaling at, long-range correlations may affect critical behavior.
the critical point. 3 _ Our simulations reveal that the phase boundayth) is
Wh'le t_he effect qf the source on crmc_;al exponents, if singular ath=0. The available data are consistent with an
any, is quite subtle, its effect on the position of the critical asymptotic power lawAp.~h® with a~1/2, but further
point p. is dramatic. Figure 9 shows the phase boundary inygies will be needed to characterize the singularity pre-
the h-p plane, as determined in simulations. Evidengl,  (jsely A scaling or renormalization-group analysis of the
grows in a singular manner dsis increased from zero. Al- - pcp'yith an isolated particle source would clearly be desir-

though there is no jump ip, (contrary to the predictions of 56 in order to understand the form of the phase diagram,
the cluster approximations described in the preceding secyq the scaling of the order parameter.

tion), all evidence points to the derivativigp/dh being infi-
nite ath=0. For largeth, p. saturates; plotting, versus 1t

0.090

Pc
=T
L ]
L J

0.085 |

o
N
I
[=>]
[e)

leads to the esfcimatpc_= 0.0966 _(1) in theh—co limit. The ACKNOWLEDGMENTS
nature of the singularity at=0 is not fully clear: a double
logarithmic plot of Ap,=p.(h) —p:(0) versush does not We are grateful to Miguel Angel Moz for valuable dis-

yield a simple power law, perhaps due to saturation-inducedussions, and to Peter Grassberger and Maria Augusta San-
curvature, but suggests an exponent=df/2 ash—0 (see tos, for communicating their results prior to publication. This
Fig. 9, insel. As can be seen from Fig. 1, it is plausible thatwork was supported by CNPqg and FAPEMIG. G.O. ac-
Ap is a smooth function oh¥2. Elucidating the precise na- knowledges support from Hungarian Research Fund OTKA
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