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Pair contact process with a particle source
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We study the phase diagram and critical behavior of the one-dimensional pair contact process~PCP! with a
particle source using cluster approximations and extensive simulations. The source creates isolated particles
only, not pairs, and so couples not to the order parameter~the pair density! but to a nonordering field, whose
state influences the evolution of the order parameter. While the critical pointpc shows a singular dependence
on the source intensity, the critical exponents appear to be unaffected by the presence of the source, except
possibly for a small change inb. In the course of our paper, we obtain high-precision values for the critical
exponents of the standard PCP, confirming directed-percolationlike scaling.
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I. INTRODUCTION

Critical phenomena at absorbing-state phase transit
are of longstanding interest in statistical physics@1–3#, being
found, for example, in models of epidemics@4#, catalytic
kinetics @5,6#, surface growth@7#, self-organized criticality
@8–11#, and turbulence@12–14#. The transition between ac
tive and absorbing states arises out of a conflict between
opposing processes~e.g., creation and annihilation!; when
continuous~as is often the case!, it falls generically in the
directed percolation~DP! universality class@15–17#. When
two or more absorbing states exist and are connected
symmetry operation, as in branching and annihilating r
dom walks, a new kind of critical behavior appears@18–21#.

Unusual critical behavior also arises in models that c
become trapped in one of an infinite number of absorb
configurations~INAC!. ~More precisely, the number of ab
sorbing configurations grows exponentially with the syst
size. There is no special symmetry linking the different a
sorbing configurations.! Models of this sort were introduce
to describe surface catalysis@22,23#; their critical properties
have been studied in detail by various workers@24–31#. In
one dimension, the pair contact process~PCP! @25#, and
other models with INAC exhibit static critical behavior in th
DP class@26,32#, but the critical exponentsd andh, associ-
ated with the spread of activity from a localized seed, v
continuously with the particle densityf in the environment
@26,27,31,33–35#. @These exponents are defined via t
asymptotic (t→`) power laws: survival probabilityP(t)
;t2d, and mean activityn(t);th; note also that the mean
square distance of activity from the seed,R2(t);tz.# This
anomalous aspect of critical spreading for INAC may
traced to a long memory in the dynamics of the ord
parameterr arising from a coupling to an auxiliary field~the
local particle densityf!, that remains frozen in region
wherer50 @28,30,31#. Theoretical understanding of mode
with INAC remains incomplete. Mun˜oz et al. proposed a
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continuum theory for models with INAC and showed that t
static critical behavior is that of DP@28#. Formally eliminat-
ing the auxiliary field, they obtained a closed equation for
order parameter, in which a memory term appears; sim
tions of this theory also show nonuniversal exponents@33#.
While a theoretical analysis of variable spreading expone
in the PCP is lacking, an analogous phenomenon has b
analyzed exactly in the simpler cases of a random walk w
a movable partial reflector@36#, or of compact DP confined
to a parabola@37#.

In previous studies of the PCP, and, indeed, of all no
equilibrium models possessing an auxiliary or nonorder
field f, the latter has been allowed to relax to its stationa
value @38#. Only the effect of varyingf in the initial condi-
tion has been explored. Given the surprising results of th
studies, it is of interest to investigate the consequence
changing the nonordering field in thestationary stateas well.
To this end, we introduce an external fieldh that couples to
f, but not to the order parameter itself. In concrete termsh
is the rate~per site! of attempted insertions ofisolatedpar-
ticles. The source may only insert a particle at a vacant s
both of whose neighbors are also vacant; in this way, no p
are created, and the absorbing nature of configurations
void of pairs is maintained. In this paper, we examine
effect of this perturbation of the phase diagram and criti
behavior of the PCP, using cluster approximations and ex
sive simulations.

The balance of this paper is devoted to defining the mo
~Sec. II!; a discussion of cluster approximations~Sec. III!;
and analysis of simulation results~Sec. IV!. We close in Sec.
V with a discussion of our findings.

II. MODEL

In Jensen’s pair contact process~PCP! @25#, each site of
the one-dimensional latticeZ is either vacant or occupied b
a particle. Each nearest-neighbor~NN! pair of particles has a
rate p of mutual annihilation, and a rate 12p of attempted
creation. In a creation event involving particles at sitesi and
i 11, a particle may appear~with equal likelihood! at site i
21 or at i 12, provided the chosen site is vacant.~Attempts
©2001 The American Physical Society18-1
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to place a particle at an occupied site fail.! In an annihilation
event, a NN pair of particles is removed. The PCP exhib
an active phase forp,pc ; for p>pc the system eventually
falls into an absorbing configuration devoid of NN pairs, b
that typically contains a substantial densityf of isolated par-
ticles. The best estimate for the critical parameter ispc
50.077 090 (5)@32#. ~Here, and in what follows, numbers i
parentheses denote uncertainties in the last figure or figu!

To the above dynamics we now add a third process,
dition of isolated particles. Each site is bombarded by p
ticles at rateh. ~This is a fluctuating source; the mean tim
between successive addition attempts at a given site is 1h.!
An attempt to place a particle at sitei is successful if and
only if sitesi 21, i, andi 11 are all vacant. In the absence
the source, an empty lattice is absorbing. For anyh.0, how-
ever, the insertion of isolated particles onto an initially emp
lattice corresponds to random sequential adsorption~RSA! of
dimers in one dimension. The saturation density for this p
cess is (12e22)/250.432 332, . . . , @39#.

Previous studies leave little doubt that the static criti
behavior of the PCP~without a source! belongs to the uni-
versality class of directed percolation. Jensen and Dickm
found that the critical exponentsb and g ~which govern,
respectively, the stationary mean of the order parameter,
its variance!, andn i andn' ~which govern the divergence o
the correlation time and correlation length as one approac
the critical point!, are all consistent with DP values@26#. In
addition to these static properties, the exponentu, which
governs the initial decay of the order-parameter (r}t2u),
starting from a fully occupied lattice, was found consiste
with DP. More recently, the order-parameter moment ra
were found to be the same as those of other models bel
ing to the DP universality class@32#.

Starting from a spatially homogeneous distribution of N
pairs ~for example, a completely filled lattice!, the system
relaxes to a stationary state. If, by contrast, the activity
initially localized ~e.g., a single ‘‘seed’’ pair in an otherwis
absorbing configuration!, we may study the spread of activ
ity. As noted above, the critical exponentsd andh character-
izing spreading vary continuously withf, and assume DP
values only forf5fnat.0.242@40,41#. The natural density
fnat is the mean particle density in absorbing configuratio
generated by the process itself, atpc , starting with all sites
occupied. One may, equivalently, definefnat as the particle
density in the criticalstationarystate, in the thermodynami
limit. An environment withf.fnat favors spreading~and
viceversa!, since the higher the particle density in the en
ronment, the more pairs will be formed per creation even

A kind of spreading phenomenon also arises in the
tionary state due to spontaneous fluctuations. In the crit
stationary state, we may expect to find inactive regions of
sizes; the particle density in large inactive regions isfnat.
When activity spreads into such regions, it should follow t
same scaling behavior as critical spreading withfnat. Since
the exponents governing survival and growth of activity
the stationary state are subject to the scaling relationd
5b/n i andz52n' /n i , with b, n' , andn i taking DP values
in the stationary state, it follows that the spreading expone
take their usual DP values as well, forf5fnat. ~In an envi-
01611
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ronment withfÞfnat, the advance of activity is no longe
equivalent to that in the stationary state, and the spread
exponents are not constrained to take DP values.! In this
paper we studystatic critical behavior withfÞfnat due to
the action of the source.

III. CLUSTER APPROXIMATIONS

In this section, we develop dynamic cluster approxim
tions for the PCP with a source of particles. Such appro
mations often yield qualitatively correct phase diagrams@2#.
For the standard PCP~no source! the two-site approximation
was presented by Carlon, Henkel, and Schollwo¨ck @42#,
while the three-site approximation was derived by Marqu
Santos, and Mendes@41#; our results forh50 are consistent
with these studies. Then-site approximation consists of a s
of coupled differential equations for the probabilitiesPC

(n) of
eachn-site configurationC. ~There are 2n such configura-
tions, but the number of independent probabilities is,2n,
due to normalization, and various symmetries.! The system is
assumed homogeneous, so that thePC

(n) are independent o
position.

Since transitions in a set ofn contiguous sites generall
depend on sites outside the cluster, then-site probabilities are
coupled to those forn11 and so on, generating an infinit
hierarchy. Then-site approximation truncates this hierarch
by approximatingm-site probabilities~for m.n! in terms of
n-siteconditionalprobabilities. For example, ifsk represents
the state of sitek, then in the two-site approximation, a thre
site joint probability for a sequence of nearest-neighbor si
k, l, m, is approximated so

P~sk ,s l ,sm!.P~skus l !P~s l ,sm!5
P~sk ,s l !P~s l ,sm!

P~s l !
.

~1!

It is convenient to denote configurations in the PCP b
string of zeroes and one’s, the former representing vac
sites and the latter, occupied sites. We denote the probab
of configurations1 ,...,sn by (s1 ,...,sn), i.e., ~1! denotes
the probability of a randomly chosen site being occupi
~11! the probability of a nearest-neighbor occupied pair, a
so on.

In the one-site approximation, we have the transitio
(1)→(0) at rate 2p(1)2 and (0)→(1) at rate (1
2p)(1)2@12(1)#1h@12(1)#3, yielding the equation of
motion

d

dt
~1!522p~1!21~12p!~0!~1!21h~0!3, ~2!

where of course (0)512(1). For h50, the stationary ac-
tive solution is(1)5(123p)/(12p) so that the critical an-
nihilation probabilitypc51/3. @Aside from the active solu-
tion, we always have the absorbing state, (1)50.# For h
.0, there is a nonzero stationary particle density forany p
P@0,1#, i.e., the source removes the phase transition, at
level of approximation.
8-2
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TABLE I. n-site approximation results.

n pc(h50) pc(h50.1) f(h50) f(h50.1)

2 0.2000 0.6667 0 0.5
3 0.1277 0.1820 0.23 0.461
4 0.1185 0.150 23 0.2166 0.5
5 0.114 0.144 05 0.18 0.46
6 0.103 0.117 0.2234 0.438

SIM 0.077 091~5! 0.086 272~15! 0.241~1! 0.421~1!
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Next, we consider the pair approximation. There are t
independent probabilities, since, by symmetry, (10)5(01),
while normalization implies (00)12(01)1(11)51. There
are five possible transitions of a NN pair of sites: from~00!
to ~01!; from ~01! to ~00! or ~11!; from ~11! to ~00! or ~01!.
To illustrate how rates are calculated, we consider the tr
sition (00)→(01). There are two possible mechanisms: o
involves a~11! pair just to the right of the central pair; th
other involves the action of the source, and requires a va
site to the right of the central pair. In the first case, the pr
ability of the required configuration,~0011!, is approximated
as ~00!~01!~11!/@~0!~1!#; the intrinsic rate is (12p)/2. In
the second case, the configuration probability is (00
.(00)2/(0) in the pair approximation. Thus, the contribu
tion to d(01)/dt due to the transition (00)→(01) is

12p

2

~00!~01!~11!

~0!~1!
1h

~00!2

~0!
.

Note that this expression is multiplied by22 in the equation
for d(00)/dt, to take the mirror-image transition@(00)
→(10)# into account.~Recall that~10! has been eliminated
by symmetry.!

Proceeding in this manner, one readily obtains a pair
equations for~11! and (1)5(11)1(01)

d

dt
~11!52p@2~11!1~1!#

~11!

~1!

1~12p!@12~11!#
~11!@~1!2~11!#

~1!~0!
, ~3!

d

dt
~1!522p~11!1~12p!

~01!~11!

~1!
1h

~00!2

~0!
. ~4!

The stationary active solution forh50 is (1)5(125p)/(1
2p), (11)5(123p)(1)/(12p), so thatpc51/5. The criti-
cal annihilation rate is 2/3 for any nonzeroh.

The three-site approximation involves five independ
variables and thirteen distinct transitions. Integrating
coupled equations numerically, one findspc50.1277 forh
50, andpc50.181 97 for any nonzero source. We have a
lyzed cluster approximations for up to six sites; the pred
tions for pc and for the density of isolated particlesfnat at
the critical point are summarized in Table I. The cluster a
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proximations appear to approach the simulation values~note
the oscillatory nature of the approach tofnat!. We find in the
n52 approximation that for nonzeroh, the order-paramete
r}(pc2p)2 in the neighborhood of the critical point, that i
the mean-field exponentbMF52 in this case; forn.2 we
find the usual value,bMF51.

For h50, we can obtain a rough estimate ofpc by ex-
trapolating the cluster results, i.e., via a linear fit topc(n)
plotted versus 1/n. Using the data forn5326 yields pc
50.082(7); using only the n5426 data, we find pc
50.07(1), consistent with the simulation result. Unfortu
nately, the behavior of these low-order approximations is
sufficiently regular to allow an extrapolation ton→`, when
h.0.

Given a sequence of cluster approximations, and know
the value ofpc , one may apply Suzuki’scoherent anomaly
analysis to extract certain critical exponents@43#. In the
present case, however, our estimates forb appear to con-
verge slowly; we findb.0.29 forh50 ~from a quadratic fit
to the order parameter at the critical point!, and .0.28 for
h50.5. Data for larger clusters will be needed in order
derive precise predictions for critical exponents.

In Fig. 1, we compare then-site approximation predic-
tions against simulation results for the phase bound
pc(h). The cluster approximations appear to approach
simulation curve in a qualitative fashion. On the other ha
all the approximations (n<6) predict a jump inpc at h
50, while simulations showpc to be continuous, though
singular, at this point. Thus, it appears that detailed featu
of the phase diagram are beyond the small-cell approxi
tions developed here.

FIG. 1. Cluster approximation predictions~for n54, 5, and 6, as
indicated! and simulation results~circles! for the phase boundary.
8-3
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IV. SIMULATIONS

A. Method

We first define the simulation algorithm for the PCP in t
absence of a source (h50). We consider a ring ofL sites.
Since all events depend upon the presence of a NN pair
maintain a list of such pairs. An event consists in~1! choos-
ing a process~annihilation with probabilityp, creation with
probability 12p!; ~2! choosing a NN pair at random from
the list; ~3! deleting the two particles in the pair, in case
annihilation, or, in case of creation, adding a particle ad
cent to the pair, if possible. More specifically, in the case
creation, step~3! consists of choosing~with equal probabili-
ties! the site immediately to the left, or to the right, of th
NN pair, and inserting a particle at this site if it is vaca
The time increment associated with each event~creation or
annihilation! is Dt51/Np where Np is the number of NN
pairs just prior to the event.~If Np50, the system has fallen
into an absorbing configuration and the trial ends.! In this
way, each NN pair undergoes, on average, one event~cre-
ation or annihilation! per unit time. The list of NN pairs mus
naturally be updated following each annihilation or succe
ful creation.

Whenh.0, each creation or annihilation is followed by
certain numberNh of source events. Suppose a creation
annihilation has just occured, and that there are nowNp
pairs. Then the next creation or annihilation will occur af
a time interval of 1/Np ; during this interval, the expecte
number of source events isLhDt5Lh/Np , sinceh is the
rate of insertion attempts per site and unit time. Thus, a
each creation or annihilation we performNh insertion at-
tempts, whereNh is a Poissonian random variable with me
Lh/Np . An insertion attempt consists in choosing a sitei at
random~each site has probability 1/L; no lists are used in
this process!, and inserting a particle there if and only if site
i 21, i, and i 11 are all vacant.

B. Results

We used the simulation algorithm described above to
terminepc(h) at a number of differenth values. In addition,
detailed studies were performed ath50, 0.1, and 10 in order
to obtain precise values for critical exponents and other pr
erties. All simulations start from a fully occupied lattice. Th
order parameterr5Np /L ~i.e., the density of nearest
neighbor pairs!, the survival probability,P(t) ~that is, to
haveNp.0!, and the particle densityc are monitored during
the evolution, and, in particular, in the stationary state. T
properties of principal interest as regards critical behavior
the stationary order-parameterr̄ ~the overline denotes a sta
tionary mean!, the moment ratiom[r2/( r̄)2, and the life-
time t, obtained by fitting an exponential to the surviv
probability: P(t);e2t/t. Uncertainty estimates forr̄, c̄, m,
and t are obtained from the standard deviation evalua
over a set of 3–5 independent runs.

In order to fix the critical pointpc for a given value ofh,
we employ three criteria. The first is the finite-size scali
behavior of the order parameter: one expects a simple po
law dependence at the critical point,
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r̄~pc ,L !'L2b/n', ~5!

as has in fact been verified for many absorbing-state ph
transitions@2,3#. For noncriticalp values, the dependence o
r̄(pc ,L) upon L shows deviations from a power law, typ
cally manifested as curvature on a plot ofr̄(pc ,L) versusL
on log scales. The same considerations apply to the surv
time, whose critical finite-size scaling form is

t~pc ,L !;Ln i /n'. ~6!

Our second criterion for locatingpc is thus power-law de-
pendence oft on the system size.

A third criterion is based on the independence of mom
ratios such asm at the critical point. This property, which ha
long been used in studies of equilibrium critical phenome
@44#, was more recently verified for absorbing-state pha
transitions in the contact process and PCP@32,45#. We deter-
mine the valuep* (L1 ,L2) at which the moment ratios
m(p,L1) andm(p,L2) take the same value, for pairs of sy
tem sizesL1 and L2 . Extrapolatingp* to L→` yields an
estimate forpc .

We studied system sizesL550, 100, 200, 500, and 1000
A study at a particular value ofh begins with a quick survey
of small systems, to obtain a preliminary estimate ofpc .
Then, for each system size, we perform high-statistics stu
at three to fivep values, obtaining the properties of intere
to high precision. Values ofr̄, m, t, andc̄ at intermediatep
values are obtained via interpolation of the high-precis
data using polynomial~typically cubic! least-squares fits.

We tested this procedure on the standard PCP (h50). For
L550 we ran a total of 63105 trials atp values of 0.0769,
0.0770, 0.0771, and 0.0772. For this small system, the
tionary state is well sampled in trials that extend to a ma
mum time of 500. ForL51000, we performed a total of 3
3104 trials ~extending to a maximum time of 105! at p
50.0770, 0.0771, and 0.0772. Sample sizes and maxim
times for intermediate system sizes fall between the val
quoted forL550 and 1000; similar parameters were used
the high-precision studies ath50.1 and 10. Figure 2 illus-
trates the results of the fitting procedure forr; it is clear that
the simulation data are well represented by a smooth fu

FIG. 2. Simulation data for the stationary order-parameter va
r̄ for L550 andh50. The solid line is a cubic fit.
8-4
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tion. In Fig. 3, we show all of the data form ~for h50!
together with the associated polynomial fits.

For h50, the three criteria mentioned above yieldpc
50.077 091(5), in excellent agreement with previous stu
ies @32,40,46#. The uncertainty inpc reflects scatter in the
last three moment-crossing points, and in thep-value yield-
ing power laws forr̄ and fort. Extrapolating the values o
m(pc ,L) to L→`, we find m51.1740(5). ~Here, the un-
certainty includes three sources: that in the original data,
uncertainty of the extrapolation atpc , and the uncertainty in
pc itself. The same applies to the exponent values discus
below.! Our result is once again in excellent agreement w
that of Ref.@32#, mc51.1735 (5) for transitions in the DP
universality class in 111 dimension.

From the scaling ofr̄ at the critical point we findb/n'

50.2522 (5)~see Fig. 4!; this exponent ratio takes the valu
0.2521 for the DP class@47#. The survival time data~Fig. 5!
yield n i /n'51.577(4), while the DP value is 1.5807@47#.

FIG. 3. Simulation data and polynomial fits for the moment ra
m, for h50. System sizesL550, 100, 200, 500, and 1000 i
order of increasing slope. Inset: detail of crossing region forL
5100, . . . ,1000.

FIG. 4. Stationary density versus system size at the critical p
for h50 (h), h50.1 (1), andh510 (L). Error bars are smalle
than the symbols.
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As noted in the Introduction, the order parameter is expec
to follow a power law,r;t20 during the approach to the
stationary state. A study atp50.077 091 in a system of 100
sites yieldedu50.1596 (2)~see Fig. 6!, while the expected
DP value isu5b/n i50.15947(3). Finally, a study ofr̄ in
the supercritical regime~p50.072220.076, for L51000!
yieldedb50.276 (3) @via the usual relation,r̄;(pc2p)b#.
The accepted value isb50.27649 (4) @47#. We note that
these exponent values are the highest precision yet repo
for the PCP, and that they place the model unambiguousl
the DP universality class.

While the results forb/n' and b furnish the estimate
n'51.092 (7), it is desirable, for reasons explained below
have an independent estimate ofn' . SinceD5pc2p enters
all finite-size scaling forms in the combinationDL1/n', we
may obtain such an estimate either from a data-colla
analysis, or by studying the finite-size dependence of a
rivative such asdm/dp at pc ; the latter must diverge a
L1/n'. We find that this derivative does follow a power law

nt

FIG. 5. Lifetime versus system size at the critical point. Sy
bols as in Fig. 4.

FIG. 6. Decay of the order parameter atpc . Upper curve:h
50; dotted lineh50.1; lower-most curves:h51 andh510, which
cannot be distinguished on this scale.
8-5
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a fit to the data yieldsn'51.086 (22), where the relativel
large error reflects the uncertainty associated with numer
evaluation of a derivative.~Both our estimates are consiste
with the DP value,n'51.0968.!

Our data for the particle densityc̄(pc ,L) fall on a straight
line when plotted versusL2b/n', and extrapolate to 0.241~1!

for L→` ~Fig. 7!. In the active state,c̄ represents thetotal
particle density~isolated particles as well as those belongi
to pairs!, but whenL→` at p5pc there are no pairs; in this
limit, c̄ corresponds to the natural density,fnat of isolated
particles. Our result agrees with previous studies, based
rectly on absorbing configurations@40,41#.

The procedure described above, which furnishes resul
unprecedented precision for the standard PCP, was repe
for h50.1 and 10. The resulting critical parameters are co
pared with theh50 case in Table II. We remark that th
dependence ofr̄, t, and m on L, at the critical point, is
qualitatively the same as forh50, and that the associate
critical exponents,b/n' , n i /n' , and u, and moment ratio
m, are the same, to within uncertainty, as forh50. This is
particularly clear from Fig. 4, which compares the depe
dence ofr̄ on L at the critical point forh50, 0.1, and 10,
and Fig. 5, a similar plot of the lifetimet. The same power
laws are seen, regardless of the value ofh, the sole difference
between zero and nonzeroh being a slight change in ampli
tude. The data forh50.1 andh510 are virtually identical.

The decay ofr at the critical point again appears to follo
the same power law, regardless of whether or not the so

FIG. 7. Stationary particle density versusL2b/n', illustrating
linear extrapolation toc` . Symbols as in Fig. 4.
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is present. Figure 6 shows that the main effect of the sou
is a small decrease in the amplitude. Analysis of the lo
slopes of the graphs in Fig. 6 leads tou50.1603 (5) in the
presence of the source, in very good agreement with
value u50.1596 (4) found forh50. The rather imprecise
estimates forn' , obtained directly from the scaling o
dm/dp, likewise agree to within uncertainty, independent
h.

There are two principal differences between the scal
properties with and without the source. First, Table II sho
that the limiting (L→`) value of the particle densityc̄ is
much larger whenh.0. ~The data forc̄ at the critical point,
and the extrapolation toc` , are depicted in Fig. 7.! In fact,
there is good reason to expectc` to jump from fnat to a
higher value as soon ash.0 ~just as in the cluster approxi
mations of the previous section!, since, no matter how weak
the source will eventually fill in all available sites~as in
RSA!, in the absence of activity. With increasingh, c` ap-
proaches the RSA value of 0.4323.

In addition to the expected difference in limiting partic
densities, the source appears to induce a rather subtle ch
in the critical exponentb ~see Fig. 8!. The value forh.0 is
about 4% greater than forh50; since only about 2% of this
difference may be attributed to uncertainty, this seems
represent a significant, albeit small, change in the expon
The interpretation this result, however, is not straightf
ward, since all of the other exponents~or ratios! studied ap-

FIG. 8. Stationary pair density versusD5pc2p, for h50, 0.1,
and 10;L51000. Symbols as in Fig. 4. Straight lines represe
least-squares fits to the linear portion of the data forh50 andh
510; the slopes are 0.276 and 0.287, respectively.
TABLE II. Critical parameters of DP and the PCP. DP exponents from Ref.@47#, m from Ref. @32#.
Numbers in parentheses denote uncertainties in the last figure~s!.

h pc b/n' n i /n' b n' u m c`

DP 0.252 08~4! 1.5807 0.276 49 1.096 84~1! 0.159 47~3! 1.1735~5!

0 0.077 091~5! 0.2523~3! 1.577~4! 0.276~3! 1.086~22! 0.1596~4! 1.1740~5! 0.241~1!

0.1 0.086 272~15! 0.2540~15! 1.571~9! 0.287~3! 1.083~2! 0.1602~4! 1.176~1! 0.421~1!

10 0.097 850~10! 0.2554~10! 1.574~10! 0.287~3! 1.080~10! 0.1604~4! 1.175~1! 0.433~1!
8-6
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pear to be insensitive to the source. In particular, the va
for b/n' are constant to within 1.2%, while our result forn'

~from the scaling ofdm/dp! is constant to within 0.6%, im-
plying constancy ofb to better than 2%. Thus, it is difficul
to accept the apparent change inb at face value; a bette
understanding will require either a theory of the effect of t
source, or numerical results for larger systems. It is wo
noting that with the exception ofb, all exponents have bee
obtained via finite-size scaling at the critical point. Thus, o
results are consistent with the possibility that the sou
modifies the apparent scaling of the order parameter near
not at, the critical point, perhaps due to additional correcti
to scaling. We cannot rule out a true~as opposed to merel
apparent! change in the exponentb with the data in hand,
but, given our other results, such a modification would en
a very surprising violation of the usual connection betwe
scaling in the supercritical regime and finite-size scaling
the critical point.

While the effect of the source on critical exponents,
any, is quite subtle, its effect on the position of the critic
point pc is dramatic. Figure 9 shows the phase boundary
the h-p plane, as determined in simulations. Evidently,pc
grows in a singular manner ash is increased from zero. Al-
though there is no jump inpc , ~contrary to the predictions o
the cluster approximations described in the preceding
tion!, all evidence points to the derivativedp/dh being infi-
nite ath50. For largerh, pc saturates; plottingpc versus 1/h
leads to the estimatepc50.0966 (1) in theh→` limit. The
nature of the singularity ath50 is not fully clear: a double
logarithmic plot of Dpc5pc(h)2pc(0) versush does not
yield a simple power law, perhaps due to saturation-indu
curvature, but suggests an exponent of'1/2 ash→0 ~see
Fig. 9, inset!. As can be seen from Fig. 1, it is plausible th
Dp is a smooth function ofh1/2. Elucidating the precise na
ture of the singularity is a central issue for future study.

FIG. 9. Critical annihlation ratepc versus source strengthh ~the
dashed line is simply a guide to the eye!. The inset shows the
critical point shiftDpc versush on log scales; the straight line ha
a slope of 1/2.
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V. DISCUSSION

Motivated by the question of universality at an absorbin
state phase transition in the presence of a source couplin
a nonordering field, we investigated the phase diagram
critical behavior of the PCP with a source of isolated p
ticles. We studied the model via cluster approximations a
extensive simulations.n-site cluster approximations~for n
<6! yield predictions for the phase boundarypc(h), and the
isolated particle densityf that appear to approach the sim
lation results. All of the cluster approximations studied he
predict of a discontinuity inpc at h50; simulations show
pc(h) to be a continuous function, albeit singlar ath50.

The central conclusion from extensive simulations p
formed for source strengthsh50, 0.1, and 10 is that the
presence of the source, and the associated change in
background density of isolated particles, has no detecta
effect on scaling at the critical point. The present level
precision permits us to state that the values ofn' , b/n' ,
n i /n' , u, and the moment ratiom5r2/( r̄)2, are constant to
within 1% as we vary the intensity of the source. Our resu
for these parameters are fully consistent with known val
for the DP universality class. We have noted, on the ot
hand, that in the presence of the source, the critical expo
b appears to be about 4% greater than the DP value. Th
in conflict with the balance of our results that indicate co
stancy of the critical exponents. A resolution must await d
velopment of a theoretical understanding of scaling in
presence of the source, and/or more extensive simulatio

The apparent insensitivity of the critical behavior to
change in the stationary density places the PCP in the s
category as the threshold transfer process~TTP! @27,38#.
Whereas in the TTP the nonordering field may relax in
absence of activity, while in the PCP it cannot, the two mo
els are similar in that the nonordering field exhibits on
short-range correlations@26,29#. An interesting open ques
tion is whether perturbations in a nonordering field that le
to long-range correlations may affect critical behavior.

Our simulations reveal that the phase boundarypc(h) is
singular ath50. The available data are consistent with
asymptotic power lawDpc;ha with a'1/2, but further
studies will be needed to characterize the singularity p
cisely. A scaling or renormalization-group analysis of t
PCP with an isolated particle source would clearly be de
able, in order to understand the form of the phase diagr
and the scaling of the order parameter.
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@22# J. Köhler and D. ben-Avraham, J. Phys. A24, L621 ~1991!.
@23# E. V. Albano, J. Phys. A25, 2557~1992!; 27, 431 ~1994!.
@24# I. Jensen, J. Phys. A27, L61 ~1994!.
@25# I. Jensen, Phys. Rev. Lett.70, 1465~1993!.
01611
.

@26# I. Jensen and R. Dickman, Phys. Rev. E48, 1710~1993!.
@27# J. F. F. Mendes, R. Dickman, M. Henkel, and M. C. Marqu´s,

J. Phys. A27, 3019~1994!.
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